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Introduction

What is Fine-grained entity typing(FET)

Given a candidate entity(mention) and it is context, Case: Jack robs Mike, Jack is eventually caught.
predict a set of possible categories(Type)

NER:Jack: ,Mike:
Context: "They were arrested by FBI agents." ack: {personj,Mike: {person;

Mention: FBI agents
Type:{organization, administration, force, agent, police}. FET:Jack: {person, criminal} ,Mike: {person, victim}

By providing fine-grained semantic labels, FET 1s
critical for entity recognition and can benefit many
NLP tasks, such as relation extraction ,entity linking
and question answering.
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Figure 2: Overview of the process for LRN which contains an encoder, a deductive reasoning-based decoder and
an inductive reasoning-based decoder. The figure shows: at step 1, the label person is predicted by deductive
reasoning, and the attribute human is activated; at step 3, the label scientist is generated by inductive reasoning.

For encoding, we form the input instance X as “[|CLS], x,, ..., [E],
m,, ..., my, [E,], ..., x,” where [E,], [E,] are entity markers, m is
mention word and x is context word. We then feed X to BERT and
obtain the source hidden state H={h,, ..., h,}. Finally, the hidden
vector of [CLS] token is used as sentence embedding g



Chongging ATAI

Advanced Technique

University of of Artificial

Introduction

F = al |

Deductive Reasoning for Extrinsic Dependencies

i pers o= theo —lcom nder— - « - ’: ! Attribute Label H
I

I ¥ I g 1
A I B, T L e P batch batch 3 :
Ba— . B P 5 -
! . D I [R:-e_ducq'-.re i ! f— historian | @ il |  event .
v B } heasoning : 1 +— they a-— —+D |  organization| |
| j<bos> person theorlst ommander’ ! 1 f— scholar o @ | | place |
1 ] I

] - - - | | :

| H ! \human human human i - =t~ reporter | @ i % :
: i H scholar scholar | i Inductive I‘ ) _F~ human & @ | student H
: TP ) Reasoning | i[@]——w 4~ worker | @ +® | musician ||
I TR EraT i T i i ST TS e e e I
by, a El'_"-‘_at_ef fl'_trlb_tﬂ_ef T+ scientist ! i () —— police @ ~—+@ | terrorism !
——————————————————————————————————————————— ! activate, _f— expert £ @ | scientist H
| I — i
1 I

: : 1 Activate Function |
: Iy : o i
: Only such a potent force, [they] theorize, coull:l collapse some of the war ship : 1 F 4 :
)

Concretely, we utilize a LSTM-based auto-regressive network as decoder and
obtain the hidden state of decoder S = {s,, ..., s, }, where k 1s the number of
predicted labels. We first initialize s, using sentence embedding g, then at
each time step, two attention mechanisms — contextual attention and premise
attention, are designed to capture context and label information for next
prediction.
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In local BAG, we collect attributes in two ways:

(1)We mask the entity mention in the sentence, and predict the [MASK] token using Activate Function

masked language ,and the non-stop words whose prediction scores greater than a pd
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confidence threshold 0, will be used as attributes — we denote them as context =~ ==~~~ 7----===----==-==-----mmmommoos
attributes.
(2) We directly segment the entity mention into words using Stanza2, and all NON-StOP _ e rre would be forced until [cash] could be raised ...
words are used as attributes — we denote them as entity attributes. object, money, currency, income, resource, financing
Figure 3 shows several attribute examples. Given attributes, we compute the attribute- <" " @2pial interest revenue
label relatedness (i.e. E in g) using the cosine similarity between their GloVe bl
. object, money, award, payment, gi Entity Attribute
embeddmgs. royalty, payment fund, award, assistance, support Context Attribute

Figure 3: Examples of attributes.
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Set Prediction Loss. In FET, cross entropy loss
is not appropriate because the prediction results
is a label set, ie., {y], ¥3. y3} and {3, ¥3, y7}
should have the same loss. Therefore we measure
the similarity of two label set using the bipartite
matching loss (Sui et al., 2020). Given the golden
label set J = {1, ..., ym } and generated label set

* =y}, ...,y }, the matching loss L£(ij)s of y;
and y7 is calculated by 13, then we use the Hun-
garian Algorithm (Kuhn, 1955) to get the specific
order of golden label set as y = {¥1,..., Um} 10
obtain minimum matching loss Lg:

£(ij)s = CE(yi, y}) (13)
Ls=CE(Y.Y*) (14)

where CE is cross-entropy.
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BAG Loss. To make the model activate labels
correctly, we add a supervisory loss to the bipartite
attribute graph to active correct labels:

|L]

Li= —Z scorey)) * y; (15)
1 ey

o = ? (16)
—1 ,'L-‘j E }’

Final Loss. The final loss is a combination of set
loss and BAG loss:

L=Ls+ALa (17)
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Model | R F1
without label dependency
*Choi et al. (2018) 47.1 242 320

*ELMo(Onoe and Durrett, 2019) 51.5 330 402

BERT(Onoe and Durrett, 2019) 51.6 33.0 40.2

BERT](in-house] 559 33.0 415
with label dependency

*LABELGCN (Xiongetal.,2019) | 50.3 29.2 36.9

LRN w/o IR 61.2 335 433

LRN 545 389 454

Table 1: Macro P/R/F1 results on Ultra-Fine test set.
* means using augmented data. "without label depen-
dency" methods formulated FET as multi-label classi-
fication without considering associations between la-
bels. "with label dependency" methods leveraged as-
sociations between labels explicitly or implicitly.
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Model Total General Fine Ultra-Fine
P R F P R F P R F P R F
*Choi et al. (2018) 481 232 3131603 616 610|404 384 394|428 8.8 14.6

TLABELGCN (Xiong et al., 2019) 493 281 358|662 688 675|439 407 422424 142 213
HY Large (Lopez and Strube, 2020) | 43.4 342 38.2 | 614 739 67.1 | 357 46.6 404|365 199 257
*ELMo (Onoe and Durrett, 2019) 50.7 33.1 40.1 | 669 80.7 732|417 462 438 | 456 174 252

BERT (Onoe and Durrett, 2019) 51.6 328 40.1 | 674 80.6 734|416 547 473|463 156 234
BERT(in-house] 541 321 403|688 792 736|438 574 497 |50.7 146 226
LRN w/o IR 60.7 325 423|793 755 774|596 448 512457 187 265
LRN 537 38.6 449 | 778 764 77.1| 558 50.6 53.0 434 26.0 325

Table 2: Macro P/R/F1 of each label granularity on Ultra-Fine dev set, and long tail labels are mostly in the
ultra-fine layer. * means using augmented data. T We adapt the results from Lépez and Strube (2020).

Total General Fine Ultra-Fine
P R F P R F P R F P R F
HY XLarge (Lépez and Strube, 2020) / / / / I 891 / P 29 / /[ 26.1

Model

BERT](in-house] 559 33.0 415|697 81.6 752|437 56.0 49.1 | 53.5 155 240
LRN w/o IR 61.2 335 433|783 767 775|616 441 514|478 199 28.1
LRN 545 389 454|774 767 77.1 584 504 541|435 264 328

Table 3: Macro P/R/F1 of different label granularity on Ultra-Fine test set.
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g a Shot=0 Shot=1 Shot=2
Numberof Category | Fredictigs Correct Predicted Prec. | Correct Predicted Prec. | Cormrect Predicted Prec.
BERT|in-house] 293 5683 0 0 / 1 1 100.0% 9 66 13.6%
LRN wio IR 330 5740 0 0 / 1 3 33.3% 15 28 53.6%
LRN 997 7808 110 218 50.5% 67 252 26.6% 94 276 34.1%

Table 4: Performance of the zero-shot, shot=1 and shot=2 label prediction. "Category" means how many kinds of
types are predicted. "Prediction" means how many labels are generated.
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D T t 46.0 45,0 >
ev es . L —— 6.
Model P R P P R F :zz cxni - 8,
LRN 537 38.6 449 | 545 389 454 w Entlty »
ProAil 531 393 452|526 395 45.1 e |
PreAti-ConAtt | 563 363 442|564 365 443 B 8
ekl s 468 407 435 | 478 407 440 e
LRN wio IR 07 325 423|612 335 433 o
PreAtt 545 342 421|551 350 4238 55 07 4 96 @8 10
PreAti-ConAtt | 552 329 413|562 343 426 @ i)
-SetLoss 460 376 414 | 466 375 41.6

Table 5: Ablation results on Ulira-Fine dataset: PreAtt  Figure 4: (a) Ablation experiments of context attributes

denotes premise attention, ConAtt denotes contextual and entity at}ributes on Ultra-Fine dataset. (b) PEI:fﬂlf'-
attention, and -SetLoss denotes replacing set prediction ~ mances of different confidence threshold 6. and simi-

loss with cross-entropy loss. larity threshold 6 on dev set.
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Encoder Model Ace MaF MiF
with augmentation
HYPER  Lépez and Strube (2020) | 474 758 694
Choi et al. (2018) 595 768 718
falm Xiong et alF (2019) 596 718 T22
ELMo *Onoe and Durrett (2019) | 64.9 845 79.2
(Lin and Ji, 2019) 63.8 829 773
Wang et al. (2020) 61.1 81.8 76.3
BERT [in-house 62.2 834 788
HERT o o S 661 848 80.1
LRN 645 845 793
without augmentation
EI Mo *Onoe and Durrett (2019) | 42.7 72.7 66.7
Chen et al. (2020) 58.7 73.0 68.1
Onoe and Durrett (2019) | 51.8 76,6 69.1
BERT[in-house] 515 766 69.7
BERT LRN w/o IR 553 773 704
LRN 56.6 77.6 718

Table 6: Results on OntoNotes test set. Augmentation
is the augmented data created by (Choi et al., 2018)
which contains 800K instances and therefore there’re
little few-shot labels in this setting. And * indicates
using additional features to enhance the label represen-
tation.
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